Suppression of interneuron programs and maintenance of selected spinal motor neuron fates by the transcription factor AML1/Runx1.
نویسندگان
چکیده
Individual spinal motor neuron identities are specified in large part by the intrinsic repertoire of transcription factors expressed by undifferentiated progenitors and maturing neurons. It is shown here that the transcription factor AML1/Runx1 (Runx1) is expressed in selected spinal motor neuron subtypes after the onset of differentiation and is both necessary and sufficient to suppress interneuron-specific developmental programs and promote maintenance of motor neuron characteristics. These findings show an important role for Runx1 during the consolidation of selected spinal motor neuron identities. Moreover, they suggest a requirement for a persistent suppression of interneuron genes within maturing motor neurons.
منابع مشابه
Different Levels of Repressor Activity Assign Redundant and Specific Roles to Nkx6 Genes in Motor Neuron and Interneuron Specification
Specification of neuronal fate in the vertebrate central nervous system depends on the profile of transcription factor expression by neural progenitor cells, but the precise roles of such factors in neurogenesis remain poorly characterized. Two closely related transcriptional repressors, Nkx6.2 and Nkx6.1, are expressed by progenitors in overlapping domains of the ventral spinal cord. We provid...
متن کاملmiR-218 is Essential to Establish Motor Neuron Fate as a Downstream Effector of Isl1-Lhx3
While microRNAs have emerged as an important component of gene regulatory networks, it remains unclear how microRNAs collaborate with transcription factors in the gene networks that determines neuronal cell fate. Here we show that in the developing spinal cord, the expression of miR-218 is directly upregulated by the Isl1-Lhx3 complex, which drives motor neuron fate. Inhibition of miR-218 suppr...
متن کاملEstablishment of Motor Neuron-V3 Interneuron Progenitor Domain Boundary in Ventral Spinal Cord Requires Groucho-Mediated Transcriptional Corepression
BACKGROUND Dorsoventral patterning of the developing spinal cord is important for the correct generation of spinal neuronal types. This process relies in part on cross-repressive interactions between specific transcription factors whose expression is regulated by Sonic hedgehog. Groucho/transducin-like Enhancer of split (TLE) proteins are transcriptional corepressors suggested to be recruited b...
متن کاملRUNX1: A MicroRNA Hub in Normal and Malignant Hematopoiesis
Hematopoietic development is orchestrated by gene regulatory networks that progressively induce lineage-specific transcriptional programs. To guarantee the appropriate level of complexity, flexibility, and robustness, these networks rely on transcriptional and post-transcriptional circuits involving both transcription factors (TFs) and microRNAs (miRNAs). The focus of this review is on RUNX1 (A...
متن کاملTumor and Stem Cell Biology Repression of Vascular Endothelial Growth Factor Expression by the Runt-Related Transcription Factor 1 in Acute Myeloid Leukemia
VEGFA is considered one of the most important regulators of tumor-associated angiogenesis in cancer. In acute myeloid leukemia (AML) VEGFA is an independent prognostic factor for reduced overall and relapse-free survival. Transcriptional activation of the VEGFA promoter, a core mechanism for VEGFA regulation, has not been fully elucidated. We found a significant (P < 0.0001) inverse correlation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 105 17 شماره
صفحات -
تاریخ انتشار 2008